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Abstract—In this paper the variation of the velocity error
of a four-bar mechanism with spring and damping forces
is reduced by solving a dynamic optimization problem using
a differential evolution algorithm with a constraint handling
mechanism. The optimal design of the velocity control for the
mechanism is formulated as a dynamic optimization problem.
Moreover, in order to compare the results of the differential
evolution algorithm, a simulation experiment of the proposed
control strategy was carried out. The simulation results and
discussion are presented in order to evaluate the performance
of both approaches in the control of the mechanism.

Index Terms—Velocity control, differential evolution algo-
rithm, four-bar mechanism, dynamic optimization.

I. INTRODUCTION

THE four-bar mechanism (FBM) is extensively used in
several engineering applications [1], [2], [3]. This is

due to the topological simplicity, functional versatility and
because this mechanism can generate a cyclic trajectory (path
generation). Hence, the four-bar mechanism has been widely
studied in the last decades. The path generation of the four-bar
mechanism is achieved by using analytical, numerical and
graphical methods [4]–[6]. Nevertheless, the statement of
optimization problems to increase the number of precision
points and the tracking precision are been used in the path
generation of the FBM [7], [8].

In the analysis and design of the FBM the main assumption
considers that the angular velocity of the actuator is constant.
Nevertheless, it is not always fulfilled, if an electric motor
drives the crank. For example, when the crank rotates, the
center of mass of the FBM may move. The change of the
inertia of the FBM yield an external load to the motor such
that the angular velocity of the crank is not constant. Hence,
it is important to select the appropriate control system that
guarantee an uniform and efficient regulation of the angular
velocity.
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There exist several advanced control strategy that may
guarantee robustness in the angular velocity, such as robust
control [9], adaptive control [10], etc. Nevertheless, from an
industrial point of view, PID controllers can provide a good
performance if the gains are correctly tuned in.

In this paper, the modified PID controller presented in [11]
is used to regulate the angular velocity of a four-bar
mechanism with spring and damping forces (FBM-SDF). The
optimal PID control gains is found by considering a dynamic
optimization problem and by using a constraint handling
mechanism in the differential evolution algorithm to solve
it. The effectiveness of the algorithm is shown in simulation
results.

The paper is organized as follows: Section II presents the
coupled dynamics of the four-bar mechanism with DC motor.
Section III presents the control strategy for the system. In
Section IV, the dynamic optimization problem is stated for
finding the optimal control gains. The constraint handling
differential evolution algorithm is show in Section V. The
simulation results and discussion are given in Section VI and
finally, the conclusions are drawn in Section VII.

II. DYNAMIC MODEL

The four-bar mechanism with spring and damping forces
(FBM-SDF) has one degree of freedom (dof ) in the crank
(link L2). This dof is actuated by a DC motor. The schematic
representation of the mechanism is shown in Fig. 1. The
mass, the inertia, the length, the mass center length and
the mass center angle of the i-th link are represented by
mi, Ji, Li, ri, φi, respectively. The angle of the i-th link with
respect to the base frame (X-Y) is named as θi. The stiffness
constant of the spring and the damping coefficient of the
damper are represented by k and C.

The kinematic analysis [5] of the FBM-SDF is required
to obtain the angular velocity θ̇i ∀i = 2, 3, 4 and the linear
velocity vix, viy of the mass center of the i-th link with respect
to the inertial frame. The angular and the linear velocity is
described in (1)-(3).

θ̇i = γiθ̇2 (1)

υix = αiθ̇2 (2)

υiy = βiθ̇2 (3)
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Fig. 1. Four-bar mechanism with spring and damping forces

where:

α2 = −r2 sin(θ2 + φ2) (4)
α3 = −L2 sin θ2 − r3γ3 sin(θ3 + φ3) (5)
α4 = −r4γ4 sin(θ4 + φ4) (6)
β2 = r2 cos(θ2 + φ2) (7)
β3 = L2 cos θ2 − r3γ3 cos(θ3 + φ3) (8)
β4 = −r4γ4 cos(θ4 + φ4) (9)
γ2 = 1 (10)

γ3 =
L2 sin(θ4 − θ2)
L3 sin(θ3 − θ4)

(11)

γ4 =
L2 sin(θ3 − θ2)
L3 sin(θ3 − θ4)

(12)

Defining the Lagrangian function L̃ (13), where K and P
is the kinetic and potential energy, respectively.

L̃ = K − P (13)

where:

K =

4∑
i=2

(
1

2
mi

(
υ2ix + υ2iy

)
+

1

2
Jiθ̇

2
i

)
=

1

2
A (θ2) θ̇

2
2 (14)

P =
1

2
k (θ4 − θ4,0)2 (15)

A (θ2) =

4∑
i=2

(
mi

(
α2
i + β2

i

)
+ γ2i Ji

)
(16)

Using θ2 as the generalized coordinate and following
the methodology described in [11], the Euler-Lagrange
formulation [12] which described the dynamic model of the
FBM-SDF is given by (17), where D is the Rayleigh’s
dissipation function and θ4,0 is the angular position of the
link 4 when the spring is in equilibrium.

T =
d

dt
(
∂L̃

∂θ̇2
)− ∂L̃

∂θ2
+
∂D

∂θ̇2
(17)

where:

D =
1

2
C
·
θ
2

4 (18)

The total and partial derivatives of (17) is given by (19).

T = A (θ2) θ̈2+
1

2

dA (θ2)

dθ2
θ̇22+kγ4 (θ4 − θ4,0)+Cγ24 θ̇2 (19)

where:

A (θ2) = C0 + C1γ
2
3 + C2γ

2
4 + C3γ3 cos (θ2 − θ3 − φ3)

(20)
dA (θ2)

dθ2
= 2C1γ3

dγ3
dθ2

+ 2C2γ4
dγ4
dθ2

+ C3
dγ3
dθ2

cos (θ2 − θ3 − φ3)

− C3γ3 (1− γ3) sin (θ2 − θ3 − φ3) (21)

C0 = J2 +m2r
2
2 +m3L

2
2 (22)

C1 = J3 +m3r
2
3 (23)

C2 = J4 +m4r
2
4 (24)

C4 = 2m3L2r3 (25)
dγ3
dθ2

=
L2 (D1 +D2)

L3 sin
2 (θ3 − θ4)

(26)

dγ4
dθ2

=
L2 (D3 +D4)

L4 sin
2 (θ3 − θ4)

(27)

D1 = (γ4 − 1) sin (θ3 − θ4) cos (θ4 − θ2) (28)
D2 = (γ4 − γ3) sin (θ4 − θ2) cos (θ3 − θ4) (29)
D3 = (γ3 − 1) sin (θ3 − θ4) cos (θ3 − θ2) (30)
D4 = (γ4 − γ3) sin (θ3 − θ2) cos (θ3 − θ4) (31)

In order to model the full dynamics of the FBM-SDF, the
dynamic of the actuator [13] must be included. A schematic
diagram of the DC motor is represented in Fig. 2, where L and
R represent the inductance and the armature resistance, i(t)
and Vin(t) are the current and voltage input, respectively. J
and B is the inertia moment and the friction coefficient of the
output shaft. TL, Tm and Vb is the load torque, the magnetic
motor torque and the Back electromotive force of the motor,
respectively. The motor constant is represented by Kf and the
constant of the back electromotive force is represented by Kb.

The dynamic model of the DC motor [14] consists
on modeling the electrical and mechanical parts. Using
Kirchhoff’s second law, the closed loop circuit of Fig. 2 can
be written as (32).

L
di (t)

dt
+Ri (t) = Vin (t)−Kbθ̇1 (32)

By using the Newton’s second law in the mechanical part
of the DC motor, the equation (33) is obtanied, where Ta and
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Fig. 2. Schematic diagram of a DC motor

Tb is the output torque of the shaft a and b, respectively (see
Fig. 2).

Tm −Bθ̇1 − Ta − TL = Jθ̈1 (33)

The mechanical transmission among the two gears in the shafts
is expressed in (34), where ri and Ni ∀ i = 1, 2 is the radius
and the number of teeth of the gears.

Tb
Ta

=
θ̇1

θ̇2
=
r2
r1

=
N2

N1
= n (34)

Substituting Ta from (33) to (34), the torque applied to the
mechanical system is written as (35).

Tb = n
(
Tm − TL −Bθ̇1 − Jθ̈1

)
(35)

Using the relation θ̇1 = nθ̇2 in (34), Tm = Kf i and TL = 0,
the dynamic equation of the DC motor is given by (36)-(37).

Tb = nKf i (t)− n2Bθ̇2 − n2Jθ̈2 (36)

L
di (t)

dt
+Ri (t) = Vin (t)− nkbθ̇2 (37)

Hence, the coupled dynamics of the DC motor with the
FBM-SDF is given by combining (36), (37) and (19). Let the
state variable vector x = [x1, x2, x3]

T = [θ2, θ̇2, i]
T and the

input vector u = Vin, the coupled dynamics in a state space
representation of the DC motor with the FBM-SDF is given
by (38).

ẋ = f(~x, u(t), t)

=

 x2
A0

[
A1x

2
2 +A2x2 + nKfx3 +A3

]
1
L (u (t)− nKbx2 −Rx3)

 (38)

where:

Fig. 3. Input angular velocity θ̇2 of the FBM-SDF without a control strategy

A0 =
1

A (x1) + n2J1
(39)

A1 = −1

2

dA (x1)

dx1
(40)

A2 = −
(
Cγ42 + n2B

)
(41)

A3 = −kγ4 (θ4 − θ4,0) (42)

III. CONTROL STRATEGY

In the synthesis of mechanism, the main assumption is to
consider the input velocity as a constant. Nevertheless, this can
no be ensured without a closed loop control system. In Fig. 3
shows the behavior of the input angular velocity θ̇2 when a
constant voltage of 30 V olts is applied. It is observed that the
input angular velocity is not constant. This is true because the
four-bar mechanism presents dead-centre positions and it adds
uncertain loads in the crank.

Based on the work of Tao and Sadler [11], the proposed
control strategy is used in this paper. This controller is stated
as in (43), where Kp, KI and KD is the proportional (P),
integral (I) and derivative (D) gains, respectively. The velocity
error and its derivative are represented by e(t) = θ̇d2 − θ̇2 and
ė(t) = −θ̈2, where θ̇d2 is the constant desired velocity.

u (t) = Kpe (t)

∫ t

0

θ̇d2dt+KI

∫ t

0

e (t) dt+KD ė (t) (43)

IV. DYNAMIC OPTIMIZATION PROBLEM TO FIND THE
OPTIMUM CONTROLLER GAINS FOR CONSTANT INPUT

VELOCITY OF THE FBM-SDF
The dynamic optimization problem [15] consist on finding

the optimum design variables ~p ∈ R3 such that minimize the
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objective function (44) subject to the closed-loop system of
the FNM-SDF (45) with the initial state vector x0, inequalities
constraints (48) and bounds in the design variable (49).

min−→p εR3
F (−→p ) (44)

subject to:

ẋ = f(−→x , u(~p, t), t) (45)

u (t) = Kpe (t)

∫ t

0

θ̇d2dt+KI

∫ t

0

e (t) dt+KD ė (t) (46)

−→x (0) = x0 (47)
g (−→x ) ≤ 0 (48)
pi,min ≤ −→p ≤ pi,max (49)

In the next subsections, variables, functions and all parts
that involve the dynamic optimization problem (DOP) are
described.

A. Design Variable Vector

The design variable vector ~p = [Kp,KD,KI ]
T ∈ R3

includes the gains of the modified PID controller.

B. Objective Function

The variation of the input velocity of the crank is chosen
as the objective function in the optimization problem. This is
an important issue due to a bad selection of the PID gains,
the input velocity of the crank could be considerably affected.
The objective function is written as in (50), where Max()
and Min() is the maximum and minimum value of the input
velocity presented in the time interval [0, tf ].

F (~p) = |Max(x2(t))−Min(x2(t))|; t ∈ [0, tf ] (50)

C. Constraints

The first constraint (45) is the solution of the differential
equation of the dynamic model of the FBM-SDF choosing x0
as the initial condition. This constraints provide the dynamic
behavior of the system in the optimization problem.

The inequality constraints consist on establishing that the
rise time tr of the angular velocity of the crank θ̇2(t) is less
than 0.1s and the overshoot does not exceed of 1.7% of the
desired angular velocity θ̇d2 . These constraints is stated as in
(51) and (52), respectively.

g1 : tr ≤ 0.1s (51)
g2 : θ̇2(tr) ≤ θ̇d2 + 0.017θ̇d2 (52)

The bounds in the design variable vector are defined by
~pi,min and ~pi,max ∀ i = 1, 2, 3.

1 BEGIN
2 G = 0
3 Create a random population ~xi

G ∀i = 1, ..., NP
6 Evaluate F (~xi

G), g(~x
i
G), ∀i = 1, ..., NP

7 Do
8 For i = 1 to NP Do
9 Select randomly {r1 6= r2 6= r3} ∈ ~xG.
10 jrand =randint(1, D)
11 For j = 1 to D Do
12 If (randj [0, 1) < CR or j = jrand) Then
13 ui

j,G+1 = xr1
j,G + F (xr2

j,G − xr3
j,G)

14 Else
15 ui

j,G+1 = xi
j,G

16 End If
17 End For
18 Evaluate F (~ui

G+1), g(~u
i
G+1)

19 If (g(~ui
G+1) = 0 and g(~xi

G)=0) Then
20 If (F (~ui

G+1) < F (~xi
G)) Then

21 ~xi
G+1 = ~ui

G+1

22 Else
23 ~xi

G+1 = ~xi
G

24 End If
25 Else If (g(~ui

G+1) < g(~xi
G)) Then

26 ~xi
G+1 = ~ui

G+1

27 Else
28 ~xi

G+1 = ~xi
G; End If

29 End If
30 End For
31 G = G+ 1
32 While (G ≤ GMax)

Fig. 4. CHDE algorithm

V. DIFFERENTIAL EVOLUTION ALGORITHM

In the last decades, the use of heuristic techniques have
been used in engineering problems [16], [17]–[19]. This
is due to the increment of the technological advances
and because problems are non-convex, discontinuous and/or
present discrete variables that make it difficult (or imposible)
to solve them by traditional optimization techniques such as
nonlinear programming techniques.

In this work, the differential evolution (DE) algorithm [20]
with a constraint-handling mechanism [17] is used to solve
the dynamic optimization problem. The constraint-handling
differential evolution (CHDE) algorithm is shown in Fig. 4.
The constraint handling mechanism is included in the selection
operation between the trial vector ~uiG+1 and the target vector
~xiG in order to remain one of them in the population for the
next generation. This mechanism consists on passing the best
individual between them for the next generation (elitism). The
best individual is the individual without constraint violation
and with less or equal objective function value or when both
individuals are unfeasible, the best individual is the one with
less constraint violation (see line 19 and 25 of Fig. 4).

For more details of the algorithm consult [20] and [17].

VI. SIMULATION RESULTS

The simulation results consist on using the CHDE algorithm
in the dynamic optimization stated above. Four parameters
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in the CHDE algorithm must be chosen. In this case, the
population size NP consists of 100 individuals. The scaling
factor F and the crossover constant CR are randomly
generated in the interval F ∈ [0.3, 0.9] at each generation, and
in the interval CR ∈ [0.8, 1) at each optimization process. The
stop criterion is when the number of generations is fulfilled
GMax = 200.

The CHDE algorithm is programmed in Matlab Release
7.9 on a Windows platform. Computational experiments were
performed on a PC with a 1.83 GHz Core 2 Duo processor and
2 GB of RAM. Ten independent runs of the CHDE algorithm
are performed.

On the other hand, in order to solve the dynamic
optimization problem (44)-(49), the closed-loop system (45)
must be solved numerically. Hence, the Runge-Kutta method
(RKM) is used to solved it, with initial condition chosen as
x0 = [0, 0, 0]T , with a desired velocity selected as θ̇d2 = 30
rad/s and with the kinematic and dynamic parameters of the
coupled dynamics proposed as in Table I.

The bound of the design variable vector is defined as
~pi,min = 0.1, ~pi,max = 50 ∀ i = 1, 2, 3.

All runs of the algorithm converge to the optimum
design variable vector ~p∗ = [50, 16.1881, 1.4394]T with a
performance function value of F (~p∗) = 0.2389. This means
that local solutions are not found by the algorithm and the
found solution can be considered as the global one. The mean
of the time spends to converge the algorithm is ten minutes.

However, in order to compare the behavior of the system
performance with the optimum design variable vector ~p∗, the
behavior of the system performance with PID gains obtained
by a trial and error procedure is carried out. Such tuning is
called experimental tuning in this paper. The experimental
tuning considers the bounds ~pi,min and ~pi,max.

In general, the design of a PID controller of linear system
is broadly studied [21]. Nevertheless, the design of a PID
controller of non-linear systems is not a trivial task. Tuning
of a PID controller by using bifurcation theory is used for
non-linear system [22]. From the feedback control strategy
proposed in the closed loop system, the choice of the controller
gains is realized so that ensures the desired convergence. The
closed loop stability of the proposed strategy is stated by
considering the convergence of the tracking errors.

The experimental tuning procedure is done by keeping in
mind that the higher the proportional gain the lower the

TABLE I
PARAMETERS OF THE FBM-SSDF AND THE DC MOTOR

FBM-SDF’s parameters
L1 =0.5593[m] J2 = 0.00071

[
kg m2

]
m2 = 1.362 [kg]

L2 = 0.102[m] J3 = 0.0173
[
kg m2

]
m3 = 1.362 [kg]

L3 = 0.610[m] J4 = 0.00509
[
kg m2

]
m4 = 0.2041 [kg]

L4 = 0.406[m] φ2 = φ3 = φ4 = 0 [rad]
r2 = 0 [m] r3 = 0.305 [m] r4 = 0.203 [m]

Motor’s parameters
R = 0.4 [Ω] L = 0.05[H] Kf = 0.678 [Nm/A]

Kb = 0.678[V s] B = 0.226[Nms] J = 0.056[kgm2]
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Fig. 5. Angular velocity of the crank with both tuning approaches: the
optimum and experimental tuning

speed fluctuation and the steady-state error. On the other
hand, excessively high proportional gains may lead to a large
amount of overshoot if the derivative gain is not large enough.
Additionally, increasing the derivative gain will decrease the
overshoot, but the system response will be slower during the
start-up period. The found gains need to fulfill the estimated
performance, overshoot≤ 1.5%, steady-error≤ 1.0% and rise
time≤ 0.1 second. The resulting design variable vector with
the experimental tuning is ~p∗et = [45.55, 5.25, 1]T with a
performance function value of F (~p∗et) = 0.2702.

It is important to remark that in the experimental tuning
procedure, several possible solutions were obtained,but they
were not feasible from the optimization problem point of view.
After several trials, we finally find the vector ~p∗et which fulfill
the constraints in the optimization problem.

In Fig. 5, the angular velocity of the crank with both tuning
approaches is shown. It is observed that in the optimum
tunning, the angular velocity presents a deviation of 0.79%
from the desired angular velocity. Also, the angular velocity
deviation on the second case was 0.9%. Finally, the rise time
by each one of the approaches were 0.1s and less of 0.1s,
respectively. This indicates that the constraints in the dynamic
optimization problem are satisfied.

On the other hand, the behavior of the control signal with
the optimum design variable vector and with the experimental
tuning is shown in Fig. 6. As it is observed, the control signal
of the optimum approach has a lower overshoot than the
second approach to reach the reference value of 30 rad/s.
This implies greater energy consumption by using the gains
of the experimental tuning. Also, both approaches produce a
control signal which compensates the nonlinear loads in order
to reduce the angular velocity variation.

In Fig. 7, a zoom of the angular velocity of the crank
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Fig. 6. Control signal dynamic behavior with both approaches
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Fig. 7. Angular velocity of the crank between the time period of 0.05s and
1s with both approaches

with both approaches in the time period between 0.05s and
1s is shown. It is observed that in the experimental tuning
procedure, the rise time of the angular velocity is less than
the optimum approach. However, the steady state behavior of
the optimum approach is most softly than the experimental
tuning procedure.

It is important to comment the although both approaches
produce good results, the best of them is the optimal one. In
addition, the CHDE algorithm is successfully applied to tuning
the PID controller without requiring a priori knowledge of the
system and in the experimental tuning procedure is necessary
this knowledge.

VII. CONCLUSION

In this paper, the optimal gains of a PID controller for
a four-bar mechanism with spring and damping forces is
found by using a differential evolution algorithm with a
constraint handling mechanism. In order to compare the
performance of the system with the optimum control, an
alternative experimental tuning procedure is carried out. The
variation of the crank’s velocity error for a four-bar mechanism
with spring and damping forces is reduced by using both
approaches. In addition, the rise time and the overshoot of
the velocity signal are limited to be in an closed interval.
However, simulation results of the closed-loop system show
that the found optimal gains provide a better performance than
the gains obtained by experimental tuning procedure.

Finally, the main advantage of using the differential
evolution algorithm with a constraint handling mechanism for
finding the optimum PID gains is that it does not require
a priori knowledge of the system and it is easy to program
it. Therefore the CHDE algorithm is becoming more used to
solve this kind of nonlinear and discontinuous problems.

Further research involves the redesign of the structural and
controller parameters considering the dynamic model and by
using alternative evolutive algorithms.
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